
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022 3451

Multi-Agent Motion Planning From Signal Temporal
Logic Specifications

Dawei Sun , Jingkai Chen , Sayan Mitra , and Chuchu Fan

Abstract—We tackle the challenging problem of multi-agent
cooperative motion planning for complex tasks described using
signal temporal logic (STL), where robots can have nonlinear and
nonholonomic dynamics. Existing methods in multi-agent motion
planning, especially those based on discrete abstractions and model
predictive control (MPC), suffer from limited scalability with re-
spect to the complexity of the task, the size of the workspace, and the
planning horizon. We present a method based on timed waypoints
to address this issue. We show that timed waypoints can help ab-
stract nonlinear behaviors of the system as safety envelopes around
the reference path defined by those waypoints. Then the search
for waypoints satisfying the STL specifications can be inductively
encoded as a mixed-integer linear program. The agents following
the synthesized timed waypoints have their tasks automatically
allocated, and are guaranteed to satisfy the STL specifications
while avoiding collisions. We evaluate the algorithm on a wide
variety of benchmarks. Results show that it supports multi-agent
planning from complex specification over long planning horizons,
and significantly outperforms state-of-the-art abstraction-based
and MPC-based motion planning methods. The implementation
is available at https://github.com/sundw2014/STLPlanning.

Index Terms—Path planning for multiple mobile robots or
agents, task and motion planning.

I. INTRODUCTION

THE capability of performing automatic task and motion
planning according to high-level specifications is what

people usually expect from an intelligent and autonomous
robotic system. These high-level task specifications usually
consist of temporal and logical rules and need cooperative
solutions of multiple agents. It is not straightforward to directly
derive a specific sequence of locations to visit for each agent
from these high-level specifications. Therefore, synthesizing
correct-by-construction plans and control strategies from these

Manuscript received September 9, 2021; accepted January 6, 2022. Date of
publication January 31, 2022; date of current version February 10, 2022. The
work of Dawei Sun and Sayan Mitra were supported in part by research grants
from the National Security Agency’s Science of Security (SoS) Program and in
part by National Science Foundation’s Formal Methods in the Field (FMITF)
Program. The work of Chuchu Fan was supported by MIT-IBM Watson AI
Lab. This letter was recommended for publication by Associate Editor Jie
Fu and Editor M. Ani Hsieh upon evaluation of the reviewers’ comments.
(Corresponding author: Chuchu Fan.)

Dawei Sun and Sayan Mitra are with the University of Illinois at Urbana-
Champaign, Champaign, IL 61820 USA (e-mail: daweis2@illinois.edu; mi-
tras@illinois.edu).

Jingkai Chen and Chuchu Fan are with the Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139 USA (e-mail: jk_chen@mit.edu; chuchu@mit.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3146951, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3146951

complicated specifications has been an open problem, especially
when the planning horizon is long and the robotic systems
have complex dynamics [1], [2]. Fortunately, Temporal Logic
(TL), especially Signal Temporal Logic (STL) provides a math-
ematically precise language for specifying tasks and rules over
continuous signals with explicit time semantics [3]. Such a
formal description of the task enables automatic control action
synthesis.

Methods based on discrete abstractions and model predictive
control (MPC) are two representative approaches for motion
planning from TL specifications. Abstraction-based methods
discretize the state space and create an abstract bisimilar graph
or automaton, on which the actual planning is performed. MPC-
based methods discretize the trajectory with a fixed time step,
and the states at each time step are viewed as the decision vari-
ables of an optimization problem. Although these methods have
achieved success in a wide range of applications, some obvious
disadvantages prevent them from being widely adopted for solv-
ing realistic robotic planning problems: To use abstraction-based
methods, one needs to construct the bisimilar graph, which
heavily relies on domain expertise. Moreover, the number of
abstracted states would potentially grow exponentially fast as the
dimensionality of the state space increases and cause significant
scalability issues. As for MPC-based methods, the number of
time steps needed might be too large for long-horizon planning.
In Section IV, we compare the proposed method with those two
methods.

In this paper, we propose a novel synthesis method, which
tackles the aforementioned challenges. Inspired by the method
in [4] where the authors use piece-wise linear (PWL) reference
paths and tracking controllers to solve simple reach-avoid syn-
thesis problems, we show that using PWL reference paths one
can also handle more expressive STL specifications. A PWL
path is defined by a sequence of time-stamped waypoints. Our
method can automatically reason over the STL formula by re-
cursively encoding constraints over the time-stamped waypoints
according to the syntax of the STL formula. Moreover, we define
the multi-agent STL, which can be used to specify tasks that need
to be completed cooperatively by a group of agents. Given such
a multi-agent STL formula, our proposed method can automat-
ically assign sub-tasks to each agent such that they cooperate
efficiently without collision. Because the tracking error of the
tracking controller is taken into account when encoding the
constraints, it can be shown that any solution that satisfies our
encoded constraints can give the desired PWL paths: Agents
following the PWL reference paths are guaranteed to satisfy
the given multi-agent STL specification and are collision-free.
More importantly, our constraints are all linear because of the
PWL structure. Therefore, we can find optimal solutions by
solving mixed-integer linear programming (MILP) problems,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5166-6350
https://orcid.org/0000-0002-3528-8185
https://orcid.org/0000-0001-7082-5516
https://orcid.org/0000-0003-4671-233X
https://github.com/sundw2014/STLPlanning
mailto:daweis2@illinois.edu
mailto:mitras@illinois.edu
mailto:mitras@illinois.edu
mailto:jk_chen@mit.edu
mailto:chuchu@mit.edu
https://doi.org/10.1109/LRA.2022.3146951

3452 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

which can be effectively handled by off-the-shelf solvers such as
Gurobi.1

We evaluate the proposed method on 8 benchmark synthesis
problems with a variety of different scenarios. We compare
with both abstraction-based and MPC-based methods [5], [6].
Empirical results show that our method outperforms other state-
of-the-art methods in terms of running time and quality of the
planned paths, not to say that our method can handle much
more general STL formulas. For example, our method is order
of magnitude faster than stlcg [5], which is MPC-based and
solves the optimization problem with gradient descent. Also,
we implement and compare with another MPC-based algorithm
proposed in [6]. The MPC-based method failed in some cases
due to the number of decision variables, while our method
successfully found a solution.

A. Related Work

Robot motion planning is a large and active research area [7]–
[10], and planning from TL specifications has received sig-
nificant attention [1], [11]. Abstraction-based approaches have
stood out as a systematic framework of finding control poli-
cies [1], [12]. However, the abstraction step of these approaches
heavily relies on domain expertise and is hard to be automated.
Among all the planning methods that can handle TL specifi-
cations, the closest to ours is the one proposed in [13], which
discretizes the workspace into regions, constructs a graph with
regions as nodes, and finally searches for a valid path on the
graph.

Another class of synthesis approaches for STL is based on
model predictive control (MPC), for example, [6], [14]–[17]. In
these approaches, a time-step is fixed and the decision variables
of the optimization are just the state at each step. Both the
dynamics and the STL specifications are encoded as constraints
of the optimization problem. Thus, it is challenging to handle
real-world robots with complicated dynamics. Another draw-
back of these approaches is that the number of time steps needed
might be too large for long-horizon planning. The proposed
approach tackles this problem by using time-stamped waypoints
instead of a fixed time step, which is also similar to event-based
control (e.g., [18]) in the sense that each waypoint can be
viewed as an event and between two consecutive events the
control input does not change. A similar idea has been studied
in [19], where the authors use zeroth-order hold control, i.e., the
control signal is held at a time instant (waypoint) for a variable
interval. Different from the proposed approach, it uses control
barrier functions to ensure STL satisfaction between timed
waypoints.

Sampling-based methods have also been used to solve plan-
ning problems for multi-agent systems and/or STL specifica-
tions. STyLuS∗ [20] is a scalable algorithm for multi-agent
optimal control with temporal logics. [21] utilizes RRT to
plan paths for long-term LTL goals with short-term reactive
specifications. In [22], the authors propose the Spatio-temporal
RRT* algorithm which can handle STL specifications containing
only “always” operators. In [23], the authors extend the RRT∗
algorithm with biased space-time sampling and guided steering,
and the algorithm is able to efficiently grow the RRT tree along
the direction of increasing STL satisfaction.

1[Online]. Available: https://www.gurobi.com/

II. PRELIMINARIES AND PROBLEM STATEMENT

Let R and Z+ be the real numbers and positive integers
respectively. For a vector x ∈ Rn, x(i) is its ith entry, ‖x‖
is its Euclidean norm, ‖x‖1 is its one-norm, and Bε(x) :=
{y ∈ Rn | ‖y − x‖ ≤ ε} is the ε-ball centered at x. Given a
matrix H ∈ Rn×m and a vector b ∈ Rn, Poly(H, b) denotes
the convex polytope {x ∈ Rm | H · x ≤ b}. H(i) is the ith row
of H , and Row(H) denotes the number of rows in H , which is
also the number of faces of the polytope. For N ∈ Z+, denote
{1, . . . , N} by [N].

A. STL for Multi-Agent Specifications

Let W := Rd be the workspace. Given a vector-valued func-
tion μ defined on W , an atomic predicate can be defined based
on μ and is denoted by πμ. For a point x ∈ W , we say that x
satisfies πμ (written as x � πμ) iff. μ(x) ≥ 0. In this paper, we
are only interested in atomic predicates that indicate whether or
not a point is in a polytope. That is, μ is always of the form
μ(x) = b−H · x. Then, x � πμ iff. x ∈ Poly(H, b). Also,
x � πμ iff. x /∈ Poly(H, b). Atomic predicates only charac-
terize standalone points in the workspace. However, we are
more interested in predicates that can characterize trajectories.
Let p : R≥0 �→ W be the position trajectory of a robot, which
is a function of time. Let (p, t) be the suffix of p at t, i.e.,
(p, t)(s) = p(s+ t). Next, STL is defined based on the atomic
predicates.

Definition 1 (Signal Temporal Logic (STL)): An STL formula
is defined with the following syntax:

ϕ ::= πμ|¬πμ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2

|♦[a,b]ϕ|�[a,b]ϕ|ϕ1U[a,b]ϕ2|ϕ1R[a,b]ϕ2 (1)

where ϕ,ϕ1, ϕ2 are STL formulas, and 0 ≤ a ≤ b < ∞ denote
time intervals. Here, the temporal operators ♦,�,U ,R are
called “eventually,” “always,” “until,” and “release” respectively.
Formally, the validity of an STL formula with respect to a
trajectory p : R≥0 �→ W is defined as follows.

p � ϕ ⇔ (p, 0) � ϕ

(p, t) � πμ ⇔ μ (p(t)) ≥ 0

(p, t) � ¬πμ ⇔ (p, t) � πμ

(p, t) � ϕ1 ∧ ϕ2 ⇔ (p, t) � ϕ1 ∧ (p, t) � ϕ2

(p, t) � ϕ1 ∨ ϕ2 ⇔ (p, t) � ϕ1 ∨ (p, t) � ϕ2

(p, t) � ♦[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b] , (p, t′) � ϕ

(p, t) � �[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b] , (p, t′) � ϕ

(p, t) � ϕ1U[a,b]ϕ2 ⇔ ∃t′ ∈ [t+ a, t+ b] , (p, t′) � ϕ2

∧ ∀t′′ ∈ [t, t′] , (p, t′′) � ϕ1

(p, t) � ϕ1R[a,b]ϕ2 ⇔ ∀t′ ∈ [t+ a, t+ b] , (p, t′) � ϕ2

∨ ∃t′′ ∈ [t, t′] , (p, t′′) � ϕ1

Please note that in the above syntax, negation can only be
applied to atomic predicates. This is known as the Negation
Normal Form and is not restrictive because any STL formula
can be put in this form [7]. The above definition of STL only

[Online]. ignorespaces Available: ignorespaces https://www.gurobi.com/

SUN et al.: MULTI-AGENT MOTION PLANNING FROM SIGNAL TEMPORAL LOGIC SPECIFICATIONS 3453

characterizes a single trajectory p. Next, we define the multi-
agent STL (MA-STL), which extends the notion of STL to cases
where multiple trajectories are considered.

Definition 2 (Multi-agent STL (MA-STL)): An N -agent STL
formula is defined recursively with the following syntax:

Ψ ::= πϕ
i |Ψ1 ∧Ψ2|Ψ1 ∨Ψ2,

where Ψ1,Ψ2 are N -agent STL formulas, and πϕ
i assigns a

single-agent STLϕ to agent i. Formally, the validity an MA-STL
w.r.t. a group of trajectories (p1, . . . , pN) is as follows.

(p1, . . . , pN) � πϕ
i ⇔ pi � ϕ,

(p1, . . . , pN) � Ψ1 ∧Ψ2 ⇔ (p1, . . . , pN) � Ψ1

and (p1, . . . , pN) � Ψ2,

(p1, . . . , pN) � Ψ1 ∨Ψ2 ⇔ (p1, . . . , pN) � Ψ1

or (p1, . . . , pN) � Ψ2.

Remark: Firstly, MA-STL enables implicit task assignment.
For example, let {Gi}Mi=1 be M goals, which are atomic predi-
cates defining some polytopes in the workspace. The MA-STL

formula Ψ =
∧M

j=1

∨N
i=1 π

♦[0,T]Gj

i assigns tasks to the agents
implicitly. That is, it does not assign specific tasks to each agent,
but requires each goal to be visited by at least one agent. As will
be shown in Section IV, with the proposed planning algorithm,
agents can figure out the optimal assignment automatically.
Secondly, please also note that MA-STL is only a syntactic sugar
in the sense that it is a subset of the STL formulas defined over
the joint state space of the multi-agent system. In this subset,
temporal operations can only be applied to a single agent at a
time.

B. Tracking Controllers for the Agents

In practice, the robots usually have complicated and nonlinear
dynamics, which makes it difficult to directly synthesize the
correct control input for them. As a famous aphorism goes: “all
problems in computer science can be solved by another level
of indirection,” we exploit a separation of concerns that exists
in the robot control synthesis problem so that complexity of
specifications (tasks) and that of the dynamics can be dealt with
separately. Specifically, we assume that a tracking controller
is given for each agent such that it can track any reference
path under any bounded disturbances with an known tracking
error ε > 0.2 That is, the distance between the actual position
of the robot and the desired position on the reference path
is always upper bounded by ε. Many techniques can be used
for obtaining such a tracking controller and the corresponding
tracking error, for example, control Lyapunov functions [24] or
control contraction metrics [25]. Here, the tracking controller is
an abstraction (or the so-called “indirection”) layer that wraps
the underlying dynamics such that the closed-loop system has
a uniform behavior (characterized by the tracking error bound),
and thus makes the design of motion planners easier.

Obviously, controlled by the tracking controller, the actual
trajectory of the agent will be in a tube centered at the reference
path. If one can show that every trajectory in this tube satisfies the
specification, then it can be guaranteed that the actual trajectory

2This is true when the reference paths satisfy the requirements of the con-
troller, for example, the velocity is bounded.

of the agent will satisfy the specification in the presence of any
bounded disturbances. To this end, we define the robustness of
trajectories.

Definition 3 (ε-robust): A group of trajectories (p1, . . . , pN)
is said to be ε-robust with respect to a property for some ε > 0, if
the property holds for all (p̂1, . . . , p̂N) satisfying supt ‖p̂i(t)−
pi(t)‖2 ≤ ε, ∀i ∈ [N].

C. The MA-STL Motion Planning Problem

Next, we define the multi-agent motion planning problem.
Intuitively, the goal is to find a group of reference paths that is
ε-robust to a given MA-STL specification and free of inter-agent
collisions. Assume that N agents are involved and T is the time
bound. Denote the size of the i-th agent by si > 0. That is,
at position p ∈ W , the agent is completely contained in a ball
around it of radius si, i.e., Bsi(p). Then, the planning problem
is defined as follows.

Definition 4 (MA-STL Motion Planning): A MA-STL motion
planning problem is defined by a tuple

〈pinit1 , . . . , pinitN ,Ψ〉,
where piniti ∈ W is the initial position of agent i and Ψ is an
MA-STL formula. The problem is to find a group of reference
paths (p1, . . . , pN) satisfying the following conditions:

1) (Initial conditions) pi(0) = piniti , ∀i ∈ [N].
2) (No inter-agent collisions) ∀t ∈ [0, T], ∀i, j ∈ [N] and

i �= j, Bsi+ε(pi(t)) ∩Bsj+ε(pj(t)) = ∅.
3) (STL Satisfaction) (p1, . . . , pN) are ε-robust w.r.t. Ψ.
Instead of searching for the reference paths among all possible

functions of time, the proposed approach restricts its search
space to piece-wise linear (PWL) paths. In the rest of the paper,
we refer to the reference PWL path for agent i as Si. Formally,
PWL paths are defined as follows.

Definition 5 (Piece-wise Linear Path): A piece-wise lin-
ear path Si in the workspace W is a function Si : R≥0 →
W that maps a time instant t to a position Si(t) ∈ W . It
is constructed from a sequence of time-stamped waypoints
{(ti,k, pi,k)}Ki

k=0 such that Si(t) = pi,k−1 +
pi,k−pi,k−1

ti,k−ti,k−1
(t−

ti,k−1) for t ∈ [ti,k−1, ti,k]. Here, 0 = ti,0 ≤ ti,1 ≤ · · · ≤ ti,K
are the time stamps, and (ti,k, pi,k) ∈ R≥0 ×W is called the kth

waypoint of pathSi. The restriction ofSi on the kth time interval
[ti,k−1, ti,k] is called the kth segment of Si and is denoted by

S
(k)
i .

III. SOLVING THE PLANNING PROBLEMS USING MILP

Overview of the approach. We formulate the problem of find-
ing PWL paths satisfying the specifications (inter-agent collision
avoidance and STL satisfaction) as a constrained optimization
problem and solve its mixed-integer linear programming (MILP)
encoding using off-the-shelf optimizers such as Gurobi. The
optimization problem is as follows:

minC L(C)
s.t.(S1, . . . , SN)satisfy the conditions in Def. 4. (2)

where C :=
⋃N

i=1

⋃Ki

k=0{ti,k, pi,k} is the set of variables repre-
senting the time stamps and waypoints on the PWL reference
paths (S1, . . . , SN), and {Ki}Ni=1 are constants. Here, L is a
linear cost function. For example, one can minimize the total
travel time, L(C) =∑N

i=1 ti,Ki
. One can also minimize the

3454 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

makespan usingL(C) = Tmakespan with extra linear constraints
Tmakespan ≥ ti,Ki

, i = 1, . . . , N .
In order to solve the above optimization problem as a MILP

problem, the constraint in (2) must be transformed into a con-
junction of linear constraints, where each constraint is of the
form LE ≥ 0, and LE is a linear expression of the decision
variables. In addition to the aforementioned continuous variables
C, the decision variables of the MILP problem will contain
another set of variablesB that are the binary variables introduced
when encoding logic relations. Also, this transformation must
be sound, i.e., the feasible set defined by the linear constraints
should be a subset of the original feasible set in (2).

In our approach, we first convert the original constraint in (2)
into a linear constraint formula (LCF), which is a logic sentence
of atomic formulas connected by conjunction or disjunction
operators. The atomic formulas are of the form LEC ≥ 0, where
LEC is a linear expression of the continuous variables C. Then,
the disjunctions in the LCF are eliminated using the big-M
method, and binary variables B are introduced in this step. After
eliminating all the disjunctions, the LCF becomes a conjunction
of linear constraints.

This section is structured as follows. We first show how to
transform the STL satisfaction and inter-agent collision avoid-
ance into LCFs in Section III-A and Section III-B respectively.
In Section III-C, we show the overall algorithm.

A. Encoding MA-STL Satisfactions With LCFs

In this section, we consider the problem of encoding an MA-
STL specification Ψ with LCFs. Recall the syntax of MA-STL
in Definition 2. In an MA-STL formula Ψ, there are only con-
junction and disjunction operations in addition to single-agent
STL formulas. Thus, if we can find an LCF for each single-agent
STL formula πϕ

i inΨ, then these LCFs can be directly combined
with conjunctions and disjunctions to get the LCF for Ψ. Hence,
in this section, we only consider the encoding of single-agent
STL formulas, and the subscript i is omitted for simplicity. In
conclusion, given an STL formulaϕ and the tracking error ε > 0,
we aim at obtaining an LCF over the time-stamped waypoints
{tk, pk}Kk=0 such that if this LCF is true then the PWL path is
ε-robust to ϕ.

Such an LCF can be constructed inductively. We will con-
struct an LCF for each of the K segments of S and denote
them by zϕi , i = 0, 1, . . . ,K − 1. We want zϕi to have a strong
soundness property: zϕi is true ⇒ ∀t ∈ [ti, ti+1], (p, t) � ϕ for
any trajectory p deviating from S up to the tracking error ε,
i.e., starting from any time point on the segment, ϕ is satisfied
robustly. Once we obtain such LCFs for ϕ, zϕ0 is just the LCF
we ultimately want. Fortunately, LCFs with such a property can
be encoded inductively starting from the atomic predicates and
their negations.

For an atomic predicate ϕ = πμ or its negation ¬πμ, where
μ(x) := b−H · x, it is easy to construct zϕi by shrinking or
bloating Poly(H, b) as follows.

zπ
µ

i =

Row(H)∧
j=1

((
b(j) −H(j) · pi − ε‖H(j)‖2 ≥ 0

)

∧
(
b(j) −H(j) · pi+1 − ε‖H(j)‖2 ≥ 0

))
; (3)

z¬π
µ

i =

Row(H)∨
j=1

((
H(j) · pi − b(j) − ε‖H(j)‖2 ≥ 0

)

∧
(
H(j) · pi+1 − b(j) − ε‖H(j)‖2 ≥ 0

))
. (4)

It is easy to verify that the constructed z formulas have the
aforementioned soundness property. Intuitively, (3) requires
both endpoints of the i-th segment of S to be in the shrunk
polytope, which is sufficient for the whole segment to be in the
polytope. (4) requires both endpoints to be on the outside of at
least one face of the bloated polytope, which is also sufficient
for the whole segment to be outside the polytope.

For non-atomic predicates, its z formula will depend on the z
formulas of its sub-predicates, e.g., z�[a,b]ϕ depends on zϕ. The
principle behind the design of the encoding rules is induction:
we should guarantee that the aforementioned soundness property
holds for the resulting z formula if it holds for all the z formulas
of the sub-predicates (i.e., the z formulas on the right-hand side
of the below encoding rules).

For conjunctions and disjunctions, it is simply zϕ1∧ϕ2

i =
zϕ1

i ∧ zϕ2

i ; zϕ1∨ϕ2

i = zϕ1

i ∨ zϕ2

i .
Temporal operators are handled as follows.

z
�[a,b]ϕ

i =
K−1∧
j=0

(
[tj , tj+1] ∩ [ti + a, ti+1 + b] �= ∅ ⇒ zϕj

)
;

(5)

z
♦[a,b]ϕ

i = (ti+1 − ti ≤ b− a)

∧
K−1∨
j=0

(
[tj , tj+1] ∩ [ti+1 + a, ti + b] �= ∅ ∧ zϕj

)
;

(6)

z
ϕ1U[a,b]ϕ2

i = (ti+1 − ti ≤ b− a)∧
K−1∨
j=0

(
[tj , tj+1] ∩ [ti+1 + a, ti + b] �= ∅ ∧ zϕ2

j

∧
j∧

l=0

([tl, tl+1] ∩ [ti, ti+1 + b] �= ∅ ⇒ zϕ1

l)

)
;

(7)

z
ϕ1R[a,b]ϕ2

i =

K−1∧
j=0

(
([tj , tj+1] ∩ [ti + a, ti+1 + b] �= ∅

⇒ zϕ2

j

) ∨ j−1∨
l=0

([tl, tl+1] ∩ [ti+1, ti+1 + b] �= ∅ ∧ zϕ1

l)

)
.

(8)

With the above rules of encoding, we can encode any STL
formula as an LCF as follows. As mentioned earlier, zϕ0 is what
we ultimately want. In order to obtain zϕ0 , all of its dependencies
on other z formulas have to be resolved. Therefore, the algorithm
runs recursively. The recursion stops at atomic predicates since
they do not depend on any other z formulas as shown in (3)
and (4).

SUN et al.: MULTI-AGENT MOTION PLANNING FROM SIGNAL TEMPORAL LOGIC SPECIFICATIONS 3455

In order to prove the aforementioned soundness property, we
proceed by induction. The base cases are the atomic predicates
((3) and (4)), for which we have provided some intuitions earlier.
Then, the induction step has to be verified for each non-atomic
predicate. The verification is straightforward but tedious. Here,
we only verify the one for the “�” operation in (5). The in-
duction hypothesis is that the soundness property holds for all
z formulas on the RHS of (5). Considering any trajectory p
deviating from S up to ε, by induction hypothesis, if zϕj is
true, then ∀t ∈ [tj , tj+1], (p, t) � ϕ. For any t ∈ [ti, ti+1] and
any t′ ∈ [t+ a, t+ b], we must have that t′ ∈ [ti + a, ti+1 + b].

Now, assume that z
�[a,b]ϕ

i is true. Let j be such that t′ ∈
[tj , tj+1]. Then, [ti + a, ti+1 + b] ∩ [tj , tj+1] �= ∅. According
to the encoding, this implies that zϕj is true. By induction

hypothesis, we have that (p, t′) � ϕ. To summarize, if z
�[a,b]ϕ

i is
true, then ∀t ∈ [ti, ti+1], ∀t′ ∈ [t+ a, t+ b], (p, t′) � ϕ, which
is equivalent to say that ∀t ∈ [ti, ti+1], (p, t) � �[a,b]ϕ. Thus,

we have proved the soundness property for z
�[a,b]ϕ

i . A complete
proof can be found in Appendix of [26].

Remark: With the above proof, it should be clear that al-
though the encoding rules are stronger than we would need, i.e.,
zϕi encodes satisfaction over the entire segment, and thus make
the problem harder to solve, it is indeed necessary. Otherwise,
the induction does not hold.

B. Encoding Inter-Agent Collision Avoidance With LCFs

In this section, we consider the problem of encoding the
inter-agent collision avoidance with LCFs. Specifically, we aim
at obtaining an LCF such that if this LCF is true, then at any time,
the distance between any two agents is safe. First, let us consider
how to encode the specification that two time-stamped line
segments are at least ε away from each other, which will be the
building block for encoding the inter-agent collision avoidance
specification. Consider two time-stamped line segments, SEG1
and SEG2. Let the endpoints of SEG1 be (t11, p11) and (t12, p12).
Similarly, (t21, p21) and (t22, p22) are the endpoints of SEG2.
Define a function safe() mapping them to an LCF as follows.

safe(SEG1, SEG2, ε) := ([t11, t12] ∩ [t21, t22] = ∅)

∨
(∥∥∥∥p11 + p12

2
− p21 + p22

2

∥∥∥∥
1

≥

∥∥∥∥p11 − p12
2

∥∥∥∥
1

+

∥∥∥∥p21 − p22
2

∥∥∥∥
1

+ ε
√
d

)
,

where d is the dimensionality of the workspace. Intuitively, if
the above LCF is true, either of the following two conditions is
true. 1) the two segments are disjoint in the time dimension; or
2) in the spatial dimension, the distance between the two centers
is greater than the summation of the half-lengths of the two
segments with a margin ε, and thus they are disjoint. Then, the
specification that all the agents will not collide with each other
is encoded as follows.

zinter =
N∧

i,j=1
i�=j

∧
k=1,...,Ki
l=1,...,Kj

safe
(
S
(k)
i , S

(l)
j , 2ε+ si + sj

)
,

which is, again, an LCF of the decision variables⋃N
i=1

⋃Ki

k=0{ti,k, pi,k}. Recall that si is the size of agent
i. Please also note that we use 1-norm instead of 2-norm in the
encoding to make the resulting expression linear (or at least
piece-wise linear). Also, a formal proof of soundness can be
found in Appendix of [26].

C. Overall Algorithm

In this section, we show the overall algorithm. Each step of
the algorithm is explained in the following.

Construct an AND-OR tree. In Section III-A and Section III-
B, we have shown how to transform the STL satisfaction and
inter-agent collision avoidance to LCFs. These LCF formulas
can be further merged with conjunctions and disjunctions into
a single LCF. Such an LCF can be represented as an AND-OR
tree. There are three types of nodes in the tree, AND nodes
(i.e., conjunctions), OR nodes (i.e., disjunctions), and leaf nodes.
Each AND or OR node has a finite number of children. Each
leaf node refers to a linear expression LE.

Additional constraints. First, we need additional constraints
for the time instants. For each PWL path Si, we need 0 = ti,0 ≤
ti,1 ≤ · · · ≤ ti,Ki

≤ T , where T is a constant specified by the
user. Secondly, the maximum velocity of the PWL paths should
also be constrained. For each PWL path Si,

‖pi,k+1−pi,k‖1≤ vmax ∗ (ti,k+1−ti,k), k=0, 1, . . . ,Ki − 1,

where vmax is a constant specified by the user. Finally, the
PWL path must start from the initial position of the agent, i.e.,
pi,0 = piniti . Please note that all these constraints are linear and
can be easily merged into the AND-OR tree.

Create MILP constraints from the AND-OR tree. In order
to create MILP constraints, we have to eliminate all the dis-
junctions in the tree so that the whole tree is converted into
a conjunction of linear constraints, i.e.,

∧
i LEi ≥ 0. Then,

we can add each LEi ≥ 0 as a linear constraint to the MILP
optimizer. To eliminate the disjunctions, we use the big-M
method. For example, given an OR node,

∨n
i=1 LEi ≥ 0, we

introduce n binary variables zi, i = 1, . . . , n. Then, it can be
shown that the conjunctive form (

∧n
i=1 LEi + (1− zi) ·M ≥

0) ∧ (
∑n

i=1 zi ≥ 1) is equivalent to the original disjunctive
form, where M is a large enough positive constant. Intuitively,
if zi = 1, then LEi + (1− zi) ·M ≥ 0 becomes the original
constraint LEi ≥ 0. On the other hand, if zi = 0, then LEi ≥ 0
is disabled since LEi +M ≥ 0 is trivially true regardless of the
value of LEi. Finally,

∑n
i=1 zi ≥ 1 enforces that at least one of

the constraints is enabled.
Putting it all together. The algorithm first creates continuous

variables in the optimizer, which represents the waypoints. Then,
it constructs the AND-OR tree of the linear constraints. Next,
disjunctions in the tree are eliminated, and the tree is converted
into a list of linear constraints, which are then added to the
optimizer. After the optimizer finds a feasible solution, the values
of the continuous variables are returned, which determine the
PWL paths.

Complexity. The computational cost of solving a MILP prob-
lem is mostly determined by the number of binary variables.
Therefore, we analyze the number of binary variables introduced
for encoding an STL formula ϕ with respect to a PWL path of
length K. Due to the use of the big-M method, each child of an
OR node in the AND-OR tree introduces a binary variable. As

3456 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 1. Benchmarks and results. Dashed-lines are the PWL paths found by the proposed method; Solid lines are the actual trajectories tracking the PWL paths;
The circle on the trajectory is the starting point, and star is the end.

in (6–8), each z formula consists of O(K) disjunctions.3 Since
each segment has a z formula, we will have O(K2) disjunctions
in order to encode a single operation. Let |ϕ| be the number
of operators in ϕ. The complexity of the proposed approach is
O(K2 · |ϕ|). For MPC-based methods (e.g., [27]), the complex-
ity of encoding is O(N · |ϕ|), where N is the number of time
steps. Although the proposed approach has quadratic complexity
while the MPC-based approach has linear complexity, in many
practical cases, the time horizon is long (and hence N is large)
but the task can be completed with very few line segments.
In these cases, K2 � N and the proposed method drastically
outperforms MPC-based methods, which is empirically verified
in the experiments in Section IV. On the other hand, in cases
where the time horizon is small but the required number of
segments is somehow large, using an MPC-based approach
could be a better choice.

IV. EXPERIMENTAL EVALUATION

We evaluate the proposed approach on several benchmark sce-
narios and compare it with several other methods. The algorithm
is implemented in Python, and the Gurobi optimizer is used for
solving the MILP problems. The implementation is available at
https://github.com/sundw2014/STLPlanning. As for the robot
dynamics, we use the Dubins vehicle model. All experiments
were conducted on a Linux workstation with two Intel Xeon
Silver 4110 CPUs and 32 GB RAM.

A. Benchmarks

Some of the benchmarks were borrowed from the motion
planning literature [5], [28]. We also designed several other
benchmarks in order to show the ability of the proposed method
to handle complicated MA-STL specifications. Specifically, the
following benchmarks are used.
stlcg-1 is from [5]. As shown in Fig. 1(a), a robot starting

from the bottom-left corner is asked to visit the up-right corner.
It is also asked to visit and avoid some regions in the middle.
Denote the four regions by Y (yellow), B (blue), G (green), and
R (red) respectively. The task is specified using an STL for-
mula (♦[0,T]�[0,5]R) ∧ (♦[0,T]�[0,5]G) ∧ (�[0,T]¬B). Please
note that in the original benchmark, region B is a circle, and
here we replace it with its circumscribed square. stlcg-2 uses
the same environment as in stlcg-1 but with a different STL
specification (♦[0,T]�[0,5]Y) ∧ (�[0,T]¬G) ∧ (�[0,T]¬B).

3Please note that in the encoding ofR, although there areO(K2) disjunctions
for a single segment, after merging the repeated ones, there are only O(K)
necessary disjunctions.

doorpuzzle-1 is from [28]. As shown in Fig. 1(c), a robot
is asked to visit the goal region (blue). However, there are walls
(black) and doors (red) in the environment. Before being able to
open a door, the robot has to visit the correspondingly numbered
green region to pick the key. Denote the goal byG, the wall byW ,
the doors by D1, . . . , D5, and the keys by K1, . . . ,K5. Then,
the task can be specified using an STL formula (♦[0,T]G) ∧
(�[0,T]¬W) ∧ (

∧5
i=1 ¬DiU[0,T]Ki).

doorpuzzle-2 is a similar scenario from [28] with 6
doors.
rover-1 and rover-2 are designed to evaluate the ability

to handle complicated multi-agent STL specifications. As shown
in Fig. 1(e), rovers are asked to visit the goal regions (green) to
make scientific observations while conforming to the following
rules: 1) Every rover should visit the charging station (blue)
within tc time units every time they leave the charging station;
2) After visiting a goal region, the rover should visit a transmitter
(yellow) within td time units, to transmit the collected data to the
remote control; 3) The rovers should avoid the walls (black) and
each other. Denote the charging station byC, the walls byW , the
transmitters by S1 and S2, and the goals by G1, . . . , G4. Then,
the rule of charging can be encoded as ϕ1 := �[0,T](¬C ⇒
♦[0,tc]C). The rule of transmitting can be encoded as ϕ2 :=

�[0,T](
∨4

i=1 Gi ⇒ ♦[0,td]

∨2
i=1 Si). The rule of avoiding walls

can be encoded as ϕ3 := �[0,T]¬W . Assuming that N rovers
are involved, the MA-STL specification encoding the task is

Ψ =
∧N

i=1 π
(ϕ1∧ϕ2∧ϕ3)
i ∧∧4

j=1

∨N
i=1 π

♦[0,T]Gj

i . We set N = 1
and 2 for rover-1 and rover-2 respectively.

wall-1 and wall-2 are designed to evaluate the ability to
arrange multiple agents to avoid collisions. As shown in Fig. 2(a)
and Fig. 2(b), a group of agents are asked to visit some goal
regions, but there is a narrow door in the middle of the map.
In order to avoid collisions, the agents have to figure out an
order for them to go through the door. Let the wall (black) be
W , and the goals be G1, . . . , G4. The task is specified as Ψ =∧4

i=1 π
�[0,T]¬W∧♦[0,T]Gi

i .

B. Comparison With Other Methods

We compared our method with others, including an MPC-
based method [6] and an abstraction-based method. Please note
that although [13] is the closest work to ours, the authors did not
provide a publicly available implementation of their approach.
Also, the benchmarks doorpuzzle-1 and doorpuzzle-2
are borrowed from [28], but the authors did not either provide
an implementation of their algorithm or report the run time of
their algorithm on these two benchmarks. Therefore, we were

https://github.com/sundw2014/STLPlanning

SUN et al.: MULTI-AGENT MOTION PLANNING FROM SIGNAL TEMPORAL LOGIC SPECIFICATIONS 3457

Fig. 2. Benchmarks and results. Dashed-lines are the PWL paths found by the proposed method; Solid lines are the actual trajectories tracking the PWL paths.
For each benchmark, we show four snapshots of the simulation with a clock in the title. The dots indicate the current locations of the agents, and agents are marked
in different colors.

not able to compare with these approaches. The details of the
setup are as follows.

As stated earlier, the lengths of the PWL paths, i.e.,
K1,K2, . . . ,KN , are constants. In the experiments, we set
K = K1 = K2 = · · · = KN . Obviously, K should be large
enough, otherwise, the problem is not feasible. Thus, we start
from K = K, where K is an initial guess by the user according
to the task. If the problem is infeasible, we increment K by 1
until the problem becomes feasible.

In [6], the authors proposed an MPC-based method of plan-
ning paths from STL specifications. It also models the planning
as a MILP problem. The decision variables are just the states
of the system at Δt, 2Δt, . . . , � T

Δt�Δt, where the time step
Δt > 0 is a small constant specified by the user. The dynamics
of the robots are encoded as constraints of the MILP problem.
Furthermore, the authors of [6] proposed a group of rules with
which an STL formula can be converted into linear constraints.
In the experiments, we set Δt = 0.1. To make the comparison
fair, we use a very simple dynamics ẋ = u for MPC, i.e., an in-
tegrator. As for the inter-agent collision avoidance requirement,
we represent it as constraints that at each time step, the distance
between any pair of agents must be greater than a threshold.
Obviously, the performance of MPC highly relies on the time
horizon T . However, we do not have an idea of how large T
should be for completing each benchmark. In order to determine
a good time bound that is not too large but large enough for
completing the task, we first run our algorithm with T = 1000
which is large enough for all the benchmarks in this section. Our
algorithm returns a PWL path with the optimized travel time4.
Then the makespan of the planned PWL paths is used as the
T when running the MPC-based algorithm. Therefore, both the
proposed method and the MPC-based method need a pre-process
to determine K or N . To make the comparison clear and fair,
we did not include the time spent for this pre-process in Table I.

We also implement an abstraction-based method based
on [29], [30], which uses a MILP-based approach for optimal
task assignment and ordering, and leverages the priority-based

4The solution is not exactly optimal. The precision of the solution depends
on one of Gurobi’s arguments, “MIPGap”. We always use the same “MIPGap”
for MPC and our method.

TABLE I
RUN TIME ON BENCHMARKS

MPC Failed in Some Cases Due to Time Out (TO). ABS Does Not
Support General STL Scenarios and Can Only Handle the Last Two
Benchmarks

search to plan collision-free trajectories to achieve all the as-
signed tasks. It does not support general STL specifications but
supports the tasks in wall-1 and wall-2.

C. Observations

The results are summarized in Table I. Planned paths can be
found in Fig. 1 and Fig. 2. Some observations are in order. Firstly,
the proposed method can correctly solve planning problems with
complex STL specifications for multiple agents (up to 4) while
other methods in comparison failed in some cases. Secondly,
the proposed method outperforms other methods in almost all
cases in terms of run time. Thirdly, as shown in Fig. 1 and
Fig. 2, because the tracking error is taken into account when
planning the PWL paths, the actual trajectories of the robots
satisfy the STL specification although they deviate from the
reference PWL paths. Also, results show that our algorithm
is able to correctly figure out the logical ordering of events
with temporal constraints, then automatically assign tasks to
each agent and do essential arrangements to avoid inter-agent
collisions. It is also worth mentioning that the tool (stlcg)
proposed in [5] also uses a fixed time step and uses gradient
descent to minimize the violation of the STL specification. It
takes minutes to find paths for its two benchmark scenarios,
stlcg-1 and stlcg-2, while our method takes less than one
second.

Furthermore, we evaluated the proposed approach on selected
benchmarks, including doorpuzzle-1, doorpuzzle-2,

3458 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

wall-1, and wall-2, with real-world robots on the Robo-
tarium [31] platform. For the real robots, we use the official
tracking controller provided by the Robotarium team, and the
tracking error is estimated from simulations using the official
simulator. Experiments show that with the proposed approach
and the tracking controller, the robots can safely complete the
tasks. Videos can be found in the supplementary material.

V. CONCLUSION

We introduced a novel method to synthesize long-horizon
motions of multi-agent robotic systems for STL specifications.
Our method can effectively encode complex specifications and
support long-time horizon synthesis due to the combinatorial
use of PWL reference paths and guaranteed tracking controller.
We plan to further reduce the complexity of the encoding rules
and support planning for larger-scale problems.

REFERENCES

[1] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annu. Rev. Control, Robot.,
Auton. Syst., vol. 1, pp. 211–236, 2018.

[2] R. Majumdar, N. Yoshida, and D. Zufferey, “Multiparty motion coordi-
nation: From choreographies to robotics programs,” in Proc. ACM Pro-
gramm. Languages. New York, NY, USA: ACM, vol. 4, no. OOPSLA,
2020, pp. 1–30.

[3] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst., 2010,
pp. 92–106.

[4] C. Fan, K. Miller, and S. Mitra, “Fast and guaranteed safe controller
synthesis for nonlinear vehicle models,” in Proc. Int. Conf. Comput. Aided
Verification, 2020, pp. 629–652.

[5] K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through signal
temporal logic specifications: Infusing logical structure into gradient-
based methods,” Proc. Int. Workshop Algorithmic Foundations Robot.,
2020, pp. 432–449.

[6] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. 53rd IEEE Conf. Decis. Control,
2014, pp. 81–87.

[7] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[8] J.-C. Latombe, Robot Motion Planning. vol. 124. Berlin, Germany:
Springer, 2012.

[9] R. Ghosh, C. Hsieh, S. Misailovic, and S. Mitra, “Koord: A language
for programming and verifying distributed robotics application,” in Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, pp. 1–30, 2020.

[10] R. Ghosh et al., “Cyphyhouse: A programming, simulation, and deploy-
ment toolchain for heterogeneous distributed coordination,” in Proc. IEEE
Int. Conf. Robot. Automat., 2020, pp. 6654–6660.

[11] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that
use language,” Annu. Rev. Control, Robot., Auton. Syst., vol. 3, pp. 25–55,
2020.

[12] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[13] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu, “Planning of hetero-
geneous multi-agent systems under signal temporal logic specifications
with integral predicates,” IEEE Robot. Automat. Lett., vol. 6, no. 2,
pp. 1375–1382, Apr. 2021.

[14] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine, vol. 48,
no. 27, pp. 323–328, 2015.

[15] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput.,
2015, pp. 772–779.

[16] Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with count-
ing temporal logics,” IEEE Trans. Robot., vol. 36, no. 4, pp. 1189–1206,
Aug. 2020.

[17] A. M. Jones et al., “Scalable and robust deployment of heterogenenous
teams from temporal logic specifications,” in Proc. Int. Symp. Robot. Res.,
Hanoi, Vietnam, 2019, pp. 1–16.

[18] D. Gundana and H. Kress-Gazit, “Event-based signal temporal logic
synthesis for single and multi-robot tasks,” IEEE Robot. Automat. Lett.,
vol. 6, no. 2, pp. 3687–3694, Apr. 2021.

[19] G. Yang, C. Belta, and R. Tron, “Continuous-time signal temporal logic
planning with control barrier functions,” in Proc. Amer. Control Conf.,
2020, pp. 4612–4618.

[20] Y. Kantaros and M. M. Zavlanos, “STyLuS*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” Int. J.
Robot. Res., vol. 39, no. 7, pp. 812–836, 2020.

[21] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path planning
with temporal logic specifications,” Int. J. Robot. Res., vol. 39, no. 8,
pp. 1002–1028, 2020.

[22] J. Karlsson, F. S. Barbosa, and J. Tumova, “Sampling-based motion
planning with temporal logic missions and spatial preferences,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 15537–15543, 2020.

[23] C.-I. Vasile, V. Raman, and S. Karaman, “Sampling-based synthe-
sis of maximally-satisfying controllers for temporal logic specifi-
cations,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 3840–3847.

[24] E. J. Rodríguez-Seda, C. Tang, M. W. Spong, and D. M. Stipanović,
“Trajectory tracking with collision avoidance for nonholonomic vehicles
with acceleration constraints and limited sensing,” Int. J. Robot. Res.,
vol. 33, no. 12, pp. 1569–1592, 2014.

[25] D. Sun, S. Jha, and C. Fan, “Learning certified control using contraction
metric,” in Proc. Conf. Robot Learn., 2020.

[26] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning
from signal temporal logic specifications - extended version,” 2022,
arXiv:2201.05247.

[27] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive
synthesis from signal temporal logic specifications,” in Proc. 18th Int.
Conf. Hybrid Syst.: Comput. Control, 2015, pp. 239–248.

[28] W. Vega-Brown and N. Roy, “Admissible abstractions for near-optimal
task and motion planning,” in Proc. Int. Joint Conf. Artif. Intell., 2018, pp.
4852–4859.

[29] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochenderfer,
“Optimal sequential task assignment and path finding for multi-agent
robotic assembly planning,” in Proc. IEEE Int. Conf. Robot. Automat.,
2020, pp. 441–447.

[30] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with
consistent prioritization for multi-agent path finding,” in Proc. AAAI Conf.
Artif. Intell., vol. 33, no. 1, 2019, pp. 7643–7650.

[31] D. Pickem et al., “The robotarium: A remotely accessible swarm robotics
research testbed,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 1699–1706.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

